Publons maintains a list of most citations under id A-7195-2011.
Google scholar is less stringent, but rarely misses anything.
Orcid is a database that is increasingly used by many non-profit and government sources.

Refereed Journal Publications

  1. Assembly Path Dependence of Telomeric DNA Compaction by TRF1, TIN2, and SA1, Ming Liu, Hai Pan, Parminder Kaur, Lucia J. Wang, Miao Jin, Ariana C. Detwiler, Patricia L. Opresko, Yizhi Jane Tao, Hong Wang, and Robert Riehn, Biophysical Journal (2023), DOI:10.1016/j.bpj.2023.04.014
  2. A Nanophotonic Interferometer. Abbas Ghaffari, Somayeh Kashani, Kevin Do, Keith Weninger, Robert Riehn. Nanotechnology (2023), 34 (18) 185201. DOI:10.1088/1361-6528/acb443
  3. Differential CpG and methylation-dependent DNA binding and dynamics of Methyl-CpG Binding Domain proteins 2 and 3. Leighton, Gage; Irvin, Ellizabeth; Kaur, Parminder,; Liu, Ming; You, ChangJiang; Bhattaram, Dhruv; Piehler, Jacob; Riehn, Robert; Wang, Hong; Pan, Hai; Williams, David C. Nucleic Acids Research (2022), 102428, DOI:10.1016/j.jbc.2022.102428
  4. Structure, dynamics, and regulation of TRF1-TIN2-mediated trans- and cis-interactions on telomeric DNA. Pan, Hai; Kaur, Parminder; Barnes, Ryan; Detwiler, Ariana C.; Sanford, Samantha Lynn; Liu, Ming; Xu, Pengning; Mahn, Chelsea; Tang, Qingyu; Hao, Pengyu; Bhattaram, Dhruv; You, Changjiang; Gu, Xinyun; Lu, Warren; Piehler, Jacob; Xu, Guozhou; Weninger, Keith; Riehn, Robert; Opresko, Patricia L.; Wang, Hong. Journal of Biological Chemistry (2021), 297 (3), 101080 , doi: 10.1016/J.JBC.2021.101080
  5. TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA. Parminder Kaur, Ryan Barnes, Hai Pan, Hai Pan, Ariana C Detwiler, Ming Liu, Chelsea Mahn, Johnathan Hall, Zach Messenger, Changjiang You, Jacob Piehler, Robert C. Smart, Robert Riehn, Patricia L.Opresko, Hong Wang, Nucleic Acids Research (2021), 49 (22), 13000-13018, doi:10.1093/nar/gkab1142
  6. DNA looping by two 5-methylcytosine-binding proteins quantified using nanofluidic devices. Ming Liu, Saeid Movahed, Saroj Dangi, Hai Pan, Parminder Kaur, Stephanie M Bilinovich, Edgar M Faison, Gage O Leighton, Hong Wang, David C Williams, Robert Riehn. Epigenetics & Chromatin (2020), 13 (1), 1-10, doi:10.1186/s13072-020-00339-7
  7. Cohesin SA1 and SA2 are RNA binding proteins that localize to RNA containing regions on DNA. Hai Pan, Miao Jin, Ashwin Ghadiyaram, Parminder Kaur, Henry E Miller, Hai Minh Ta, Ming Liu, Yanlin Fan, Chelsea Mahn, Aparna Gorthi, Changjiang You, Jacob Piehler, Robert Riehn, Alexander J R Bishop, Yizhi Jane Tao, Hong Wang. Nucleic Acids Research (2020), 48 (10), Pages 5639–5655, DOI: 10.1093/nar/gkaa284
  8. Direct observation of confinement-induced diffusophoresis. Saeid Movahed, Zubair Azad, Saroj Dangi, Robert Riehn, Nanotechnology (2019), 30 (41), 41LT01, doi:10.1088/1361-6528/ab31f7
  9. Nanoplumbing with 2D Metamaterials. Saroj Dangi, Robert Riehn; Small; Vol 15 (2), Article Number 1803478, (2019). Doi:10.1002/smll.201803478
  10. Motor-like DNA motion due to an ATP-hydrolyzing protein under nanoconfinement. Maedeh Roushan, Zubair Azad, Saeid Movahed, Paul D. Ray, Gideon I. Livshits, Shuang Fang Lim, Keith R. Weninger & Robert Riehn; Scientific Reports; Vol 8, Article number: 10036 (2018). Doi:10.1038/s41598-018-28278-0
  11. Manipulation and control of the electrokinetic motion of a non-conductive micro-particle in microchannel by generating lateral temperature gradient. Shojayian M, Irannezhad A, Amani E, Riehn R, Movahed S. Int J Heat Mass Transf. Elsevier Ltd; 2018;126:861–870. doi:10.1016/j.ijheatmasstransfer.2018.05.058
  12. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. Countryman P, Fan Y, Gorthi A, Pan H, Strickland J, Kaur P, Wang X, Lin J, Lei X, White C, You C, Wirth N, Tessmer I, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. J Biol Chem. 2018;293(3):1054–1069. doi: 10.1074/jbc.M117.806406
  13. DNA Methylation Detection Using Resonance and Nanobowtie-Antenna-Enhanced Raman Spectroscopy. Li L, Lim SF, Puretzky A, Riehn R, Hallen HD. Biophys J. Biophysical Society; 2018;114(11):2498–2506. doi:10.1016/j.bpj.2018.04.021
  14. CpG and methylation-dependent DNA binding and dynamics of the methylcytosine binding domain 2 protein at the single-molecule level. Pan, Hai; Bilinovich, Stephanie M.; Kaur, Parminder; Riehn, Robert; Wang, Hong; Williams, David. Nucleic Acids Research (2017), 45 (15): 9164-9177. doi: 10.1093/nar/gkx548
  15. Functional interplay between SA1 and TRF1 in telomeric DNA binding and DNA–DNA pairing. Jiangguo Lin, Preston Countryman, Haijiang Chen, Hai Pan, Yanlin Fan, Yunyun Jiang, Parminder Kaur, Wang Miao, Gisele Gurgel, Changjiang You, Jacob Piehler, Neil M. Kad, Robert Riehn, Patricia L. Opresko, Susan Smith, Yizhi Jane Tao, Hong Wang, Nucleic Acids Res (2016) 44 (13): 6363-6376.  doi: 10.1093/nar/gkw518
  16. Nonaffine deformation under compression and decompression of a flow-stabilized solid. Carlos P. Ortiz, Robert Riehn, Karen E. Daniels. Journal of Statistical Mechanics. 084003 (2016) doi: 10.1088/1742-5468/2016/08/084003
  17. Enhanced electrostatic force microscopy reveals higher-order DNA looping mediated by the telomeric protein TRF2, Parminder Kaur, Dong Wu, Jiangguo Lin, Preston Countryman, Kira C. Bradford, Dorothy A. Erie, Robert Riehn, Patricia L. Opresko & Hong Wang, Scientific Reports 6, Article number: 20513 (2016) doi:10.1038/srep20513
  18. DNA Brushing Shoulders: Targeted Looping and Scanning of Large DNA Strands, Zubair Azad, Maedeh Roushan, Robert Riehn, Nano Letters (2015), 15 (8), pp 5641–5646 doi:10.1021/acs.nanolett.5b02476
  19. Interference of ATP with the fluorescent probes YOYO-1 and YOYO-3 modifies the mechanical properties of intercalator-stained DNA confined in nanochannels. Maedeh Roushan, Zubair Azad, Hong Wang, Robert Riehn, Microchimica Acta 182 (7-8), 1561-1565 (2015);doi:10.1007/s00604-015-1495-7
  20. Collapse of DNA under alternating electric fields, Chunda Zhou, Robert Riehn, Physical Review E 92, artno 012714 (2015), doi:10.1103/PhysRevE.92.012714
  21. Transient loop stabilization by T4 DNA ligase probed using nanoconfinement. Maedeh Roushan, Parminder Kaur, Alena Karpusenko, Preston J. Countryman, Carlos P. Ortiz, Shuang Fang Lim, Hong Wang, Robert Riehn, Biomicrofluidics 8 (3), 034113 (2014); DOI:10.1063/1.4882775
  22. Nonlinear elasticity of microsphere heaps. Carlos P. Ortiz, Karen E. Daniels, and Robert Riehn, Phys. Rev. E 90, 022304 (2014);doi:10.1103/PhysRevE.90.022304
  23. Chromatin modification mapping in nanochannels. Shuang Fang Lim, Alena Karpusenko, Ansel L. Blumers, Diana E. Streng and Robert Riehn, Biomicrofluidics 7, 064105 (2013); DOI:10.1063/1.4833257
  24. Electrochemical detection of DNA at nanoelectrodes in nanochannels.  Bret H. Davis, Junhan Pan, Chih-kuan Tung, Robert H. Austin, Robert Riehn, Nano Life 3 (1), 1340007 (2013), DOI:10.1142/S1793984413400072
  25. Flow-Driven Formation of Solid-like Microsphere Heaps, Carlos P. Ortiz, Robert Riehn, Karen E. Daniels, Soft Matter 9 (2013), 543-549,doi:10.1039/C2SM26762D
  26. Near-Field Enhanced UV Resonance Raman Spectroscopy Using Aluminum Bow-tie Nano-antenna. Ling Li, Shuang Fang Lim, Alexander A. Puretzky, Robert Riehn, and H.D. Hallen, Applied Physics Letters 101 (2012), art. no. 113116 ,doi: 10.1063/1.4752455
  27. Fluctuation modes of nanoconfined DNA.  Alena Karpusenko, Joshua H. Carpenter, Chunda Zhou, Shuang Fang Lim, Junhan Pan, Robert Riehn. Journal of Applied Physics, 111 (2012), art. no. 024701,doi:10.1063/1.3675207
  28. Collapse of DNA in ac electric fields. Chunda Zhou, Walter W. Reisner, Rory J. Staunton, Amir Ashan, Robert H. Austin, and Robert Riehn, Physical Review Letters  106 (24) (2011), art. no. 248103. DOI: 10.1103/PhysRevLett.106.248103
  29. Density fluctuations dispersion relationship for a polymer confined to a nanotube. Joshua H. Carpenter, Alena Karpusenko, Junhan Pan, Shuang Fang Lim, and Robert Riehn, Applied Physics Letters 98 (2011), 253704, doi:10.1063/1.3602922
  30. DNA Methylation Profiling in Nanochannels. Shuang Fang Lim, Alena Karpusenko, John J. Sakon, Joseph A. Hook, Tyra A. Lamar, Robert Riehn, Biomicrofluidics 5 (3) (2011), 34106-341068. doi:10.1063/1.3613671
  31. DNA Condensation by Field-Induced Non-Equilibrium Noise. R.F Bruinsma, R. Riehn, CHEMPHYSCHEM 10 (16) (2009), pp. 2871-2875. DOI: 10.1002/cphc.200900525
  32. Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes. Chih-kuan Tung, Robert Riehn, Robert H. Austin. Biomicrofluidics 3 (3) (2009) Article No.: 031101. DOI:10.1063/1.3212074
  33. Upconverting nanophosphors for bioimaging. Shuang Fang Lim, Robert Riehn, Chih-kuan Tung, William S Ryu, Rui Zhuo, Joanna Dalland and Robert H Austin Nanotechnology 20 No 40 (7 October 2009) 405701. DOI:10.1088/0957-4484/20/40/405701
  34. Stretching chromatin through confinement. Diana E. Streng, Shuang Fang Lim, Junhan Pan, Alena Karpusenka and Robert Riehn, Lab on a Chip 9 (2009), 2772 – 2774, DOI: 10.1039/b909217j
  35. Single molecule correlation spectroscopy in continuous flow mixers with zero-mode waveguides. D. Liao, P. Galajda, R. Riehn, R. Ilic, J. L. Puchalla, H. G. Yu, H. G. Craighead and R. H. Austin, Optics Express, 16, 10077-10090. (2008), DOI:10.1364/OE.16.010077
  36. Microfluidic high gradient magnetic cell separation. David W. Inglis, Robert Riehn, James C. Sturm, Robert H. Austin, Journal of Applied Physics 99, 08K101 (2006), DOI:10.1063/1.2165782
  37. A Nanofluidic Railroad Switch for DNA. Robert Riehn, Robert H. Austin, James C. Sturm. Nano Letters 6, 1973-1976 (2006), DOI:10.1021/nl061137b
  38. Diffusion mechanisms of localized knots along a polymer. Metzler, R., Reisner, W., Riehn, R., Austin, R, Tegenfeldt, J.O., Sokolov, I.M., Europhysics Letters 76, 696-702 (2006),DOI:10.1209/epl/i2006-10312-5
  39. Wetting micro-and nanofluidic devices with supercritical water. Robert Riehn, Robert H. Austin. Analytical Chemistry 78 (16), pp. 5933-5934 (2006).DOI:10.1021/ac0604989
  40. In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans. Shuang Fang Lim, Robert Riehn, William S. Ryu, Nora Khanarian, Chih-kuan Tung, David Tank, and Robert H. Austin. Nanoletters 6, pp. 169-174 (2006). DOI:10.1021/nl0519175
  41. Local probing of photocurrent and photoluminescence in a phase-separated conjugated polymer blend by mean of near-field excitation. Robert Riehn, Richard Stevenson, David Richards, Daejoon Kang, Mark Blamire, Andrew Downes, Franco Cacialli, Advanced Functional Materials, 16(4), pp. 469-47 (2006), DOI:10.1002/adfm.200400528
  42. Restriction Mapping in Nanofluidic Devices. Robert Riehn, Manchun Lu, Yanmei Wang, Shuang Fang Lim, Edward C. Cox, Robert H. Austin, PNAS, 102, 10012-10016 (2005), DOI:10.1073/pnas.0503809102
  43. Statics and Dynamics of Single DNA Molecules Confined in Nanochannels, Walter Reisner, Keith Morton, Robert Riehn, Yan Mei Wang, Zhaoning Yu, Michael Rosen, James Sturm, Steven Chou, Erwin Frey, Robert H. Austin, Phys. Rev. Lett  94, pp. 196101/1-4 (2005), DOI:10.1103/PhysRevLett.94.196101
  44. A 2-dimensional photonic structure made from a conjugated, fluorescent polymer, R. Riehn, F. Cacialli, Journal of Optics A: Pure and Applied Optics 7, pp. S207-12 (2005)
  45. Single-molecule studies of repressor-DNA interactions, Y.M. Wang, Jonas O. Tegenfeldt, W. Reisner, R. Riehn, Xiao-Juan Guan, Ling Guo, Ido Golding, Edward C. Cox, James Sturm, and Robert H. Austin, PNAS 102, 9796-9801 (2005), DOI:10.1073/pnas.0502917102
  46. The dynamics of genomic-length DNA molecules in 100-nm channels, Jonas O. Tegenfeldt, Christelle Prinz, Han Cao, Steven Chou, Walter W. Reisner, Robert Riehn, Yan Mei Wang, Edward C. Cox, James C. Sturm, Pascal Silberzan, and Robert H. Austin, PNAS 101, pp. 10979 (2004), DOI:10.1073/pnas.0403849101
  47. Continuous microfluidic immunomagnetic cell separation, Inglis, D.W., Riehn, R., Austin, R.H., Sturm, J.C., Applied Physics Letters 85, pp. 5093 (2004), DOI:10.1063/1.1823015
  48. Fabrication of conjugated polymer nanostructures via direct near-field optical lithography, Cacialli, F., Riehn, R., Downes, A., Latini, G., Charas, A., Morgado, J., Ultramicroscopy 100, pp. 449 (2004), DOI:10.1016/j.ultramic.2003.12.016
  49. Near-field optical lithography of a conjugated polymer, Riehn, R., Charas, A., Morgado, J., Cacialli, F., Applied Physics Letters 82, pp. 526 (2003), DOI:10.1063/1.1539278
  50. Efficient electroluminescent poly(p-phenylene vinylene) copolymers for applications in LEDs. Martin, R.E., Geneste, F., Riehn, R., Beng Sim Chuah, Cacialli, F., Holmes, A.B., Friend, R.H., Synthetic Metals 119, pp. 43 (2001),DOI:10.1016/S0379-6779(00)01507-1
  51. Fluorine-substituted poly(p-phenylenes vinylenes) copolumers. Riehn, R., Morgado, J., Iqbal, R., Moratti, S.C., Holmes, A.B., Volta, S., Cacialli, F., Synthetic Metals 124, pp. 67 (2001): DOI:10.1016/S0379-6779(01)00424-6
  52. Versatile synthesis of various conjugated aromatic homo- and copolymers, Martin, R.E., Geneste, F., Beng Sim Chuah, Fischmeister, C., Yugang Ma, Holmes, A.B.,  Riehn, R., Cacialli, F., Friend, R.H., Synthetic Metals 122, pp. 1 (2001)
  53. Ultraviolet-visible near-field microscopy of phase-separated blends of polyfluorene-based conjugated polymers. Stevenson, R., Riehn, R., Milner, R.G., Richards, D., Moons, E., Kang, D.-J., Blamire, M., Morgado, J., Cacialli, F., Applied Physics Letters 79, pp. 833 (2001), DOI:10.1063/1.1389822
  54. Electrochemical and electroluminescent properties of random copolymers of fluorine- and alkoxy-substituted poly(p-phenylene vinylene)s. Riehn, R., Morgado, J. Iqbal, R., Moratti, S.C., Holmes, A.B., Volta, S., Cacialli, F., Macromolecules 33, pp. 3337 (2000), DOI:10.1021/ma992147k
  55. Efficient blue-green light emitting poly(1,4-phenylene vinylene) copolymers, Martin, R.E., Geneste, F., Riehn, R., Chuah, B.S., Cacialli, F., Friend, R.H., Holmes, A.B., Chemical Communications, pp.291 (2000), DOI:10.1039/a909382f